Mach 1433

27 November 2023

Warm-ups:
Solve $\left\{\begin{array}{c}3 x-6 y+z=7 \\ x+8 y-z=4 \text { and then }\left\{\begin{aligned} 3 x-6 y+z & =7 \\ -x+y+2 z & =3\end{aligned} \quad\left\{\begin{array}{c} \\ x+8 y-z\end{array}=4\right.\right. \\ 2 x+16 y-2 z=1\end{array}\right.$

$$
(x, y, z)=\left(\frac{\sigma}{2}, \frac{1}{2}, \frac{\sigma}{2}\right)
$$

No solution!

Quiz/exam schedule

(It's on the course website calendar.)

- 11 December: Midterm exam
- January: Quiz 5 and 6
- February: Final exam (and optional retake).

Applicalions of matrices

Matrices (the plural of "matrix") can be used for

- systems of equations
- geometry / linear transformations
- network/graph analysis
- probability and statistics
- cryptography
- image compression
- physics - optics, electronics, quantum and more.

Systems of linear equations

A linear equation is an equation of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n}=b,
$$

where x_{1}, \ldots, x_{n} are variables and a_{1}, \ldots, a_{n}, b are coefficients (usually each a_{i} is a just a constant number, but it could be some expression that does not involve any x_{i}).
A system of linear equations (or just system) is a collection of linear equations with the same variables.

- Some equations may have coefficients of 0 for some variables, so we might not see every variable appear in every equation.
- Often, we will have the same number of variables as equations, but this is not required.

systems of linear equations

Examples:

$$
\left.\begin{array}{ll}
\left\{\begin{aligned}
3 x-7 y=4 \\
x+8 y=2
\end{aligned}\right. & \left\{\begin{array}{c}
3 s+2=7 t-1 \\
s+8=2 t+12
\end{array}\right. \\
4 s=-t+5
\end{array}\right\} \begin{aligned}
7 x+2 y+9 z=-9 \\
7 x+2 y+9 z=4 \\
-4 x-3 y+5 z=2
\end{aligned} ~\left\{\begin{array}{c}
7 x+2 y+9 z=-9 \\
-4 x-3 y+k z=2
\end{array}\right\}
$$

Systems of equations

Finding values or formulas for the variables in a system is called "solving" the system. Any assignment that makes all equations true is a solution.

Example: The only solution to

$$
\left\{\begin{array}{l}
6 a-b=15 \\
2 a+b=1
\end{array}\right.
$$

is $(a, b)=(3,-2)$.
Example: $\left\{\begin{array}{l}q^{2}+b=3 \\ a^{2}-b=7\end{array}\right.$ has two solutions: $\quad(a, b)=(\sqrt{5}, 2)$ and $(a, b)=(-\sqrt{5}, 2)$.
not linear

Number of equs and variables

A system of equations is called consistent if at least one solution exists. It is called inconsistent if no solutions exist.

An overdetermined system has more equations than variables.

- Overdetermined systems are usually (but not always) inconsistent.

An underdetermined system has fewer equations than variables.

- Underdetermined systems are usually (but not always) consistent.

Number of eqns and variables

Overdetermined

$$
\left\{\begin{array}{r}
3 x-4 y+2 z=8 \\
x+7 y=2 \\
6 x+y-3 z=1 \\
8 y+z=0 \\
4 x+2 z=3
\end{array}\right.
$$

Underdetermined

$$
\begin{aligned}
& \left\{\begin{array}{l}
3 x-4 y+2 z=8 \\
3 x-4 y+2 z
\end{array}=1\right.
\end{aligned}
$$

$$
\left\{\begin{aligned}
4 x-3 y & =1 \\
x+5 y & =6 \\
2 x+y & =3
\end{aligned}\right.
$$

There are many methods to solve systems of linear equations by hand. Some of the most common are

- Substitution
- Elimination
- Matrix inverse
- Cramer's Rule.

Of course, computers can solve systems of equations for us.

Question: How many solutions can a linear system have?

2 equations and 2 variables

$$
\left\{\begin{array}{r}
3 x-6 y=4 \\
x+8 y=2
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
3 x-6 y=4 \\
3 x-6 y=2
\end{array}\right.
$$

$$
\left\{\begin{array}{r}
3 x-6 y=3 \\
x-2 y=1
\end{array}\right.
$$

one solution

no solutions

infinitely many solutions

3 equations and 3 variables

$$
\left\{\begin{array} { r }
{ 3 x - 6 y + z = 7 } \\
{ x + 8 y - z = 4 } \\
{ - x + y + 2 z = 3 }
\end{array} \quad \left\{\begin{array}{r}
3 x-6 y+z=7 \\
x+8 y-z=4 \\
2 x+16 y-2 z=1
\end{array}\right.\right.
$$

3 equations and 3 variables

$$
\left\{\begin{array}{r}
3 x-6 y+z=7 \\
x+8 y-z=4 \\
-x+y+2 z=3
\end{array}\right.
$$

$$
\left\{\begin{array}{r}
3 x-6 y+z=7 \\
x+8 y-z=4 \\
2 x+16 y-2 z=1
\end{array}\right.
$$

We can draw other arrangements with multiple planes in 3D space.

Any linear system - with any number of variables and any number of equations-will have either

- 0 solutions,
- exactly 1 solution, or
- infinitely many solutions.

Non-linear equations can be very different (for example, $\left\{\begin{array}{c}x^{2}+y^{2}=16 \\ x+y=0\end{array}\right.$ has exactly 2 solutions, but this can never happen for linear systems).

There are many methods to solve systems of linear equations by hand.

- Substitution
- Elimination
- Matrix inverse*
- Cramer's Rule*
\} Fewer calculations, but you have to \} be clever about what steps to take.
\} Follow the same steps every time, but do a lot of calculations.

It is also possible to determine the number of solutions-zero, one, or infinity-without actually solving the system.

- Determinant* of a matrix
- Rank of a matrix
* only when \# of equations = \# of variables

Solving systems using matrices

The system of three equations

$$
\left\{\begin{array}{r}
6 x+y+5 z=5 \\
2 y+9 z=3 \\
-x+4 y+18 z=5
\end{array}\right.
$$

can be written as the single equation

$$
\left[\begin{array}{ccc}
6 & 1 & 5 \\
0 & 2 & 9 \\
-1 & 4 & 18
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
5 \\
3 \\
5
\end{array}\right]
$$

using matrices.
We usually write this as $A X=B$ and call A the matrix of coefficients.

Previously: Solving for malrix x

 If $A X=B$ and A is invertible then...$$
\begin{aligned}
A X & =B \\
A^{-1} A X & =A^{-1} B \quad \text { not } B A^{-1}
\end{aligned}
$$

recall $A^{-1} A=I$

$$
I X=A^{-1} B
$$

recall $I X=X$

$$
X=A^{-1} B
$$

Let's also think about

$$
3 x=5
$$

$$
\frac{1}{3} \cdot 3 x=\frac{1}{3} \cdot 6
$$

$$
1 x=\frac{6}{3}
$$

$$
x=\frac{6}{3}
$$

Solving by inverse malrix

Any system of linear eqns corresponds to a single equation $A X=B$. Example:

$$
\left\{\begin{array}{c}
5 x+2 y-2 z=4 \\
x-4 z=2 \\
12 x+7 y+14 z=5
\end{array} \quad \rightarrow \quad\left[\begin{array}{ccc}
5 & 2 & -2 \\
1 & 0 & -4 \\
12 & 7 & 14
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right] .\right.
$$

If the coefficient matrix A is invertible, then we can solve the system as

$$
X=A^{-1} B .
$$

In order to use this, we need to know A^{-1}.

- For 2×2 matrices there is a formula you can memorize.
- For 3×3 and bigger, the steps you could use to solve a system of equations by elimination can also be used to find A^{-1} !

Example: Find the inverse of $\left[\begin{array}{cc}5 & -2 \\ 1 & 4\end{array}\right]$.

$$
\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]^{-1}=\frac{1}{5(4)-(-2) 1}\left[\begin{array}{cc}
4 & 2 \\
-1 & 5
\end{array}\right]=\left[\begin{array}{cc}
4 / 22 & 2 / 22 \\
-1 / 22 & 5 / 22
\end{array}\right]
$$

Check that mulkiplying A by A^{-1} really gives I:

$$
\begin{aligned}
{\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]\left[\begin{array}{cc}
4 / 22 & 2 / 22 \\
-1 / 22 & 5 / 22
\end{array}\right] } & =\left[\begin{array}{cc}
5\left(\frac{4}{22}\right)+(-2)\left(\frac{-1}{22}\right) & 5\left(\frac{2}{22}\right)+(-2)\left(\frac{5}{22}\right) \\
1\left(\frac{4}{22}\right)+4\left(\frac{-1}{22}\right) & 1\left(\frac{2}{22}\right)+4\left(\frac{5}{22}\right)
\end{array}\right] \\
& =\left[\begin{array}{cc}
22 / 22 & 0 / 22 \\
0 / 22 & 22 / 22
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Eqn with square malrix

Example: solve $\left\{\begin{aligned} 5 x-2 y & =15 \\ x+4 y & =14\end{aligned}\right.$ using an inverse matrix.

$$
\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
15 \\
14
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]^{-1}\left[\begin{array}{l}
15 \\
14
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{cc}
\frac{4}{22} & \frac{2}{22} \\
\frac{-1}{22} & \frac{5}{22}
\end{array}\right]\left[\begin{array}{l}
15 \\
14
\end{array}\right]=\left[\begin{array}{l}
\frac{4}{22}(15)+\frac{2}{22}(14) \\
\frac{-1}{22}(15)+\frac{5}{22}(14)
\end{array}\right]=\left[\begin{array}{c}
4 \\
5 / 2
\end{array}\right]=\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Augmented matrix

For a system $A \vec{x}=\vec{b}$, the matrix A is called the "coefficient matrix".
The augmented matrix for the system is the matrix formed by adding column \vec{b} to the matrix A. We write $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$ for this matrix.

- Example: For the system

$$
\left\{\begin{array}{l}
4 x+9 y=6 \\
2 x+3 y=0
\end{array}\right.
$$

we have

$$
A=\left[\begin{array}{ll}
4 & 9 \\
2 & 3
\end{array}\right] \text { and }\left[\begin{array}{ll}
A & \vec{b}
\end{array}\right]=\left[\begin{array}{lll}
4 & 9 & 6 \\
2 & 3 & 0
\end{array}\right]
$$

Often written

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
4 & 9 & 6 \\
2 & 3 & 0
\end{array}\right]} \\
& \text { ch a }
\end{aligned}
$$ the last column.

Row operations

Replacing a row of a matrix with a linear combination of rows is called a row operation. This is usually done with augmented matrices.

- By changing $\left[\begin{array}{cc|c}5 & -2 & 15 \\ 1 & 4 & 14\end{array}\right]$ into $\left[\begin{array}{ll|l}1 & 0 & ? \\ 0 & 1 & ?\end{array}\right]$ we solve $\left\{\begin{array}{c}5 x-2 y=15 \\ x+4 y=14\end{array}\right.$.

By changing $\left[\begin{array}{cc|cc}5 & -2 & 1 & 0 \\ 1 & 4 & 0 & 1\end{array}\right]$ into $\left.\left[\begin{array}{ll|ll}1 & 0 & \text { ? } & \text { ? } \\ 0 & 1 & \text { ? } & \text { ? , we find }\end{array}\right] \begin{array}{cc}5 & -2 \\ 1 & 4\end{array}\right]^{-1}$.

Example: Find the inverse of the matrix $\left[\begin{array}{ccc}5 & 2 & -2 \\ 1 & 0 & -4 \\ 12 & 7 & 14\end{array}\right]$.
$\left[\begin{array}{ccc|ccc}5 & 2 & -2 & 1 & 0 & 0 \\ 1 & 0 & -4 & 0 & 1 & 0 \\ 12 & 7 & 14 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{ccc|ccc}1 & 0 & -4 & 0 & 1 & 0 \\ 5 & 2 & -2 & 1 & 0 & 0 \\ 12 & 7 & 14 & 0 & 0 & 1\end{array}\right] \sim\left[\begin{array}{ccc|ccc}1 & 0 & -4 & 0 & 1 & 0 \\ 0 & 2 & 18 & 1 & -5 & 0 \\ 12 & 7 & 14 & 0 & 0 & 1\end{array}\right]$
$\sim\left[\begin{array}{ccc|ccc}1 & 0 & -4 & 0 & 1 & 0 \\ 0 & 2 & 18 & 1 & -5 & 0 \\ 0 & 7 & 62 & 0 & -12 & 1\end{array}\right] \sim\left[\begin{array}{ccc|ccc}1 & 0 & -4 & 0 & 1 & 0 \\ 0 & 1 & 9 & \frac{1}{2} & -\frac{5}{2} & 0 \\ 0 & 7 & 62 & 0 & -12 & 1\end{array}\right] \sim\left[\begin{array}{ccc|ccc}1 & 0 & -4 & 0 & 1 & 0 \\ 0 & 1 & 9 & \frac{1}{2} & -\frac{5}{2} & 0 \\ 0 & 0 & 1 & \frac{7}{2} & -\frac{11}{2} & -1\end{array}\right]$
$\sim\left[\begin{array}{ccc|ccc}1 & 0 & -4 & 0 & 1 & 0 \\ 0 & 1 & 0 & -31 & 47 & 9 \\ 0 & 0 & 1 & \frac{7}{2} & -\frac{11}{2} & -1\end{array}\right] \sim\left[\begin{array}{ccc|ccc}1 & 0 & 0 & 14 & -21 & -4 \\ 0 & 1 & 0 & -31 & 47 & 9 \\ 0 & 0 & 1 & \frac{7}{2} & -\frac{11}{2} & -1\end{array}\right]$

Solving by inverse malrix

From before, we can represent a system of equations as $A X=B$:

$$
\left\{\begin{array}{c}
5 x+2 y-2 z=4 \\
x-4 z=2 \\
12 x+7 y+14 z=5
\end{array} \quad \rightarrow \quad\left[\begin{array}{ccc}
5 & 2 & -2 \\
1 & 0 & -4 \\
12 & 7 & 14
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right] .\right.
$$

If the coefficient matrix A is invertible, then we can solve the system as

$$
X=A^{-1} B .
$$

Example:

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
5 & 2 & -2 \\
1 & 0 & -4 \\
12 & 7 & 14
\end{array}\right]^{-1}:\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right]=\left[\begin{array}{ccc}
14 & -21 & -4 \\
-31 & 47 & 9 \\
\frac{7}{2} & \frac{-11}{2} & -1
\end{array}\right]\left[\begin{array}{l}
4 \\
2 \\
5
\end{array}\right]=\left[\begin{array}{c}
-6 \\
15 \\
-2
\end{array}\right] .
$$

There are many methods to solve systems of linear equations by hand.

- Substitution
- Elimination
- Matrix inverse*
- Cramer's Rule*
* only when \# of equations = \# of variables

Eqn with square matrix

- We can solve the matrix equation $A X=B$ as

$$
X=A^{-1} B
$$

if we first compute the inverse of the matrix A.

- Cramer's Rule is a direct formula for each variable:

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}
$$

where " A_{i} " is the matrix formed by replacing Column i of matrix A with the single column B.

Eqn with square matrix

Example: solve $\left\{\begin{aligned} 5 x-2 y & =15 \\ x+4 y & =14\end{aligned}\right.$ using Cramer's Rule.

$$
\begin{aligned}
& x=\frac{\operatorname{det}\left(\left[\begin{array}{cc}
15 & -2 \\
14 & 4
\end{array}\right]\right)}{\operatorname{det}\left(\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]\right)}=\frac{15(4)-(-2) 14}{5(4)-(-2) 1}=\frac{88}{22}=4=x \\
& y=\frac{\operatorname{det}\left(\left[\begin{array}{cc}
5 & 15 \\
1 & 14
\end{array}\right]\right)}{\operatorname{det}\left(\left[\begin{array}{cc}
5 & -2 \\
1 & 4
\end{array}\right]\right)}=\frac{5(14)-(15) 1}{5(4)-(-2) 1}=\frac{55}{22}=\frac{5}{2}=y
\end{aligned}
$$

Problems with $A^{-1 B}$ and Cramer

These methods are each only possible if

- A has the same number of rows as columns (a "square" matrix)
- and $\operatorname{det}(A) \neq 0$.

Otherwise, A^{-1} does not exist.

If $\operatorname{det}(A)=0$, the system may or may not have solutions.

- $\operatorname{det}\left(\left[\begin{array}{ll}6 & 3 \\ 2 & 1\end{array}\right]\right)=6(1)-2(3)=0$.
- $\left\{\begin{array}{l}6 x+3 y=15 \\ 2 x+y=5\end{array}\right.$ has solutions but $\left\{\begin{array}{l}6 x+3 y=10 \\ 2 x+y=8\end{array}\right.$ does not.

For each system below, ask yourself

- How many variables are there?
- How many equations are there?
- Is there a solution?

$$
\begin{aligned}
& \left\{\begin{array} { c }
{ x + y = 7 } \\
{ 2 x + y = 1 0 }
\end{array} \quad \left\{\begin{array}{c}
x+y=7 \\
2 x+y=10 \\
x+y=7
\end{array}\right.\right. \\
& \left\{\begin{array}{c}
x+y=7 \\
2 x+y=10 \\
3 x+2 y=17
\end{array}\right. \\
& \left\{\begin{array}{c}
x+y=7 \\
2 x+y=10 \\
3 x+2 y=18
\end{array}\right. \\
& 2 \text { variables } \\
& 2 \text { equations } \\
& \text { rank }=2 \\
& \text { one solution } \\
& 2 \text { variables } \\
& 3 \text { equations } \\
& \text { rank = } 2 \\
& \text { one solution } \\
& 2 \text { variables } \\
& 3 \text { equations } \\
& \text { rank }=2 \\
& \text { one solution } \\
& 2 \text { variables } \\
& 3 \text { equations } \\
& \text { rank }=3 \\
& \text { no solutions }
\end{aligned}
$$

Related topics

Linear combinations of vectors
Linearly independent* collections of vectors

Systems of linear equations: the collection of all solutions can form

- nothing (no solution)
- a single point
- a line
- a plane
- a "hyperplane" (if you have 4 or more variables)

The rank* of the coefficient matrix helps determine which.

* We will define these soon.

Linear combinations

A linear combination of some vectors is any sum of scalar multiples of those vectors.

- In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if

$$
\vec{u}=s \vec{v}+t \vec{w}
$$

for some numbers s, t.

- For more vectors, \vec{u} is a linear combination of $\overrightarrow{v_{1}}, \overrightarrow{v_{2}}, \ldots, \overrightarrow{v_{n}}$ if

$$
\vec{u}=s_{1} \overrightarrow{v_{1}}+s_{2} \overrightarrow{v_{2}}+\cdots+s_{n} \overrightarrow{v_{n}}
$$

for some numbers (scalars) s_{1}, \ldots, s_{n}.

Linear combinations

A linear combination of some vectors is any sum of scalar multiples of those vectors.

- In symbols, \vec{u} is a linear combination of \vec{v} and \vec{w} if

$$
\vec{u}=s \vec{v}+t \vec{w}
$$

for some numbers s, t.
Example 1: Write $\left[\begin{array}{c}5 \\ 24\end{array}\right]$ as a linear combination of $\overrightarrow{v_{1}}=\left[\begin{array}{c}5 \\ -2\end{array}\right]$ and $\overrightarrow{v_{2}}=\left[\begin{array}{c}3 \\ -9\end{array}\right]$.
We want $x\left[\begin{array}{c}5 \\ -2\end{array}\right]+y\left[\begin{array}{c}3 \\ -9\end{array}\right]=\left[\begin{array}{c}5 \\ 24\end{array}\right]$, so we must solve the system $\left\{\begin{array}{c}5 x+3 y=6 \\ -2 x-9 y=24\end{array}\right.$.
Solution: $x=3, y=-10 / 3$. Therefore $\left[\begin{array}{c}5 \\ 24\end{array}\right]=3\left[\begin{array}{c}5 \\ -2\end{array}\right]+(-10 / 3)\left[\begin{array}{c}3 \\ -9\end{array}\right]$.

Linear dependence

We can use any of these three definitions:

- A collection of vectors is called linearly dependent (or LD) if one vector is a linear combination of the others.
- A collection $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ is linearly dependent if there exist numbers s_{1}, \ldots, s_{n} not all zero such that

$$
s_{1} \overrightarrow{v_{1}}+s_{2} \overrightarrow{v_{2}}+\cdots+s_{n} \overrightarrow{v_{n}}=\overrightarrow{0} .
$$

- Note: some of the s_{i} can be zero, just not all.
- A collection is linearly dependent if it is not linearly independent.

Linear independence

We can use any of these three definitions:

- A collection of vectors is called linearly independent if no vector is a linear combination of the others.
- A collection $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{n}}$ is linearly independent if the only solution to

$$
\begin{aligned}
& \qquad s_{1} \overrightarrow{v_{1}}+s_{2} \overrightarrow{v_{2}}+\cdots+s_{n} \overrightarrow{v_{n}}=\overrightarrow{0} \\
& \text { is } s_{1}=s_{2}=\cdots=s_{n}=0 .
\end{aligned}
$$

- A collection is linearly independent if it is not linearly dependent.

Linear (in)dependence

Note that a single vector isn't called linearly dependent or independent. This is about collections of vectors.

- Example: $\left\{\left[\begin{array}{c}5 \\ 24\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is linearly dependent.

However, it is common to skip the $\}$ and talk about the vectors directly.

- Example: " $\left[\begin{array}{c}5 \\ 24\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]$ are linearly dependent." is just a lazy way of saying the first bullet.

Linear (in)dependence

- Example: Determine whether

$$
\vec{u}=\left[\begin{array}{c}
-1 \\
5 \\
7
\end{array}\right], \vec{v}=\left[\begin{array}{c}
4 \\
-2 \\
12
\end{array}\right], \vec{w}=\left[\begin{array}{c}
-1 \\
14 \\
27
\end{array}\right]
$$

are linearly dependent or linearly independent.

Dependent. Using the first definition, this is because $\vec{\omega}=3 \vec{u}+\frac{1}{2} \vec{v}$, or because $\vec{v}=-6 \vec{u}+2 \vec{w}$, etc.

Using the second definition, this is because, e.g.,

$$
6 \vec{u}+\vec{v}+(-2) \vec{w}=[0,0,0] .
$$

Linear (in)dependence

Some facts to notice:
If a collection contains the zero vector then it is linearly dependent.
If the vectors are d-dimensional (each is a list of d numbers), then any collection of $d+1$ or more vectors will be linearly dependent.

Examples:

- $\left\{\left[\begin{array}{c}1 \\ -9 \\ 4\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 2 \\ 7\end{array}\right]\right\}$ must be LD. Note $0 \overrightarrow{v_{1}}+5 \overrightarrow{v_{2}}+0 \overrightarrow{v_{3}}=\overrightarrow{0}$.
- $\left\{\left[\begin{array}{c}3 \\ -8\end{array}\right],\left[\begin{array}{l}5 \\ 9\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ must be LD.

Rank

The rank of a matrix is the maximum number of linearly independent rows.

- Remember that a set of vectors is linearly independent if no vector is a linear combination of the others.
- Remember that a linear combination of vectors is any sum of scalar multiples of the vectors: $a \vec{v}+b \vec{w}+\cdots$
max. \# of lin. indep. rows = max. \# of lin. indep. columns

An $n \times m$ matrix can have rank at most $\min (n, m)$. An $n \times m$ matrix is called full rank if its rank is equal to $\min (n, m)$.

Rank

The rank of a matrix is the maximum number of linearly independent rows (and also the maximum number of linearly independent columns-these will always be the same number!).

Example: What is the rank of $\left[\begin{array}{ccccc}3 & 1 & -9 & 0 & 6 \\ 2 & 0 & 4 & 1 & -3\end{array}\right]$? rank 2

Example: What is the rank of $\left[\begin{array}{cc}-9 & 18 \\ 2 & -4 \\ 5 & -10\end{array}\right]$? rahk 1

Rank

The rank of a matrix is the maximum number of linearly independent rows (and also the maximum number of linearly independent columns -these will always be the same number!).

Example: What is the rank of $\left[\begin{array}{ccc}5 & 2 & 7 \\ 1 & 0 & 1 \\ 12 & 7 & 19\end{array}\right]$? because $\left[\begin{array}{c}7 \\ 1 \\ 19\end{array}\right]=\left[\begin{array}{c}5 \\ 1 \\ 12\end{array}\right]+\left[\begin{array}{l}2 \\ 0 \\ 7\end{array}\right]$
Example: What is the rank of $\left[\begin{array}{ccc}5 & 2 & 7 \\ 1 & 0 & 1 \\ 12 & 7 & 18\end{array}\right]$? because $\left[\begin{array}{c}7 \\ 1 \\ 19\end{array}\right]=a\left[\begin{array}{c}5 \\ 1 \\ 12\end{array}\right]+b\left[\begin{array}{l}2 \\ 0 \\ 7\end{array}\right]$ is impossible

Systems - summary so far

Any system of linear equations can be written as

$$
\text { coefficients } \underbrace{A \vec{x}=\vec{b}}_{\text {variables }} \text {-right-hand side }
$$

- If A is square (same \# of rows and cols) and $\operatorname{det}(A) \neq 0$, then the inverse matrix A^{-1} exists and the system has exactly one solution:

$$
\vec{x}=A^{-1} \vec{b} .
$$

- If A is square but $\operatorname{det}(A)=0$, the system has either 0 or infinitely many solutions.
- If A is not square, there is no determinant or inverse.
$\operatorname{rank}(A)$ will help us determine the number of solutions in these cases.

Rank as amount of information
Suppose we know that $\left\{\begin{array}{l}x+y+z=6 \\ x+y=3 .\end{array}\right.$
Can we stay anything about $x+y-3 z$?

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 6 \\
1 & 1 & 0 & 3 \\
1 & 1 & -3 & -6
\end{array}\right]
$$

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 6 \\
1 & 1 & 0 & 3
\end{array}\right]
$$

has rank 2 also has rank 2
No new information!

Rank as amount of information

The Rouché-Capelli Theorem

The system $A \vec{x}=\vec{b}$ has at least one solution if and only if $\operatorname{rank}(A)=\operatorname{rank}\left(\left[\begin{array}{ll}A & \vec{b}\end{array}\right]\right)$.

Reminder: A is the "coefficient matrix", and $\left[\begin{array}{ll}A & \vec{b}\end{array}\right]$ is the "augmented matrix".
If there are any solutions, the collection of all solutions has dimension $n-\operatorname{rank}(A)$, where n is the number of variables.

Dimension:

3

Mach 1433

4 December 2023

Warm-up:
Find the determinant of $A=\left[\begin{array}{ccc}5 & 2 & 7 \\ 1 & 0 & 1 \\ 12 & 7 & 18\end{array}\right]$.

Rank/system examples

Ex 1

$$
\left\{\begin{array}{rl}
5 x+2 y+7 z=6 \\
x+z=4 & A=\left[\begin{array}{ccc}
6 & 2 & 7 \\
1 & 0 & 1 \\
12 & 7 & 18
\end{array}\right] \\
12 x+7 y+18 z=9 & {[A \vec{b}]=\left[\begin{array}{ccc|c}
5 & 2 & 7 & 6 \\
1 & 0 & 1 & 4 \\
12 & 7 & 18 & 9
\end{array}\right]}
\end{array}\right.
$$

The coeff. and augmented matrices have the same rank, so the system does have at least one solution. The space of all solutions has dimension

$$
\text { (\# of variables) }-(\operatorname{rank} \text { of } A)=3-3=0 \text {, }
$$

so the set of solutions is just one point.

Rank/system examples

Ex 2.

$$
\left\{\begin{array}{rl}
5 x+2 y+7 z=6 & A=\left[\begin{array}{ccc}
6 & 2 & 7 \\
1 & 0 & 1 \\
x+z=4 & 7 & 19
\end{array}\right] \\
12 x+7 y+19 z=9 & {[A \quad \vec{b}]=\left[\begin{array}{ccc|c}
5 & 2 & 7 & 6 \\
1 & 0 & 1 & 4 \\
12 & 7 & 19 & 9
\end{array}\right]}
\end{array}\right.
$$

The coefficient and augmented matrices have different ranks, so there are no solutions to the system.

Rank/system examples

Ex 3

$$
\left\{\begin{aligned}
5 x+2 y+7 z & =10 \\
x+z & =4 \\
12 x+7 y+19 z & =13
\end{aligned}\right.
$$

$$
A=\left[\begin{array}{ccc}
6 & 2 & 7 \\
1 & 0 & 1 \\
12 & 7 & 19
\end{array}\right]
$$

$$
\operatorname{rank}(A)=2
$$

$$
\operatorname{rank}(A \mid B)=2
$$

$$
\left[\begin{array}{ll}
A & \vec{b}
\end{array}\right]=\left[\begin{array}{ccc|c}
6 & 2 & 7 & 10 \\
1 & 0 & 1 & \frac{4}{4} \\
12 & 7 & 19 & 13
\end{array}\right]
$$

The coff. and augmented matrices have the same rank, so the system does have at least one solution. The space of all solutions has dimension

$$
\text { (\# of variables) }-(\operatorname{rank} \text { of } A)=3-2=1 \text {, }
$$

so the set of solutions is a LINE in 3D space.

